Sector News
Innovating at lightning speed: How a team of LM Wind Power engineers developed the industry’s first lightning protection system
At any given moment during the day, 2,000 thunderstorms are active around the world. That amounts to sixteen million of such severe weather events per year. With wind turbines stretching up to a couple hundred meters above ground, very often in flat areas with no other big structures nearby, they are easy targets for lightnings. Some estimate that every blade will be struck, on average, 128 times over a period of 20 years, potentially causing important economic damage.
Although wind turbine blades are highly susceptible to lightning strikes, this can be dealt with through lightning protection systems. In fact, today it is unthinkable not to equip wind turbines with such systems, but that wasn’t always the case: “Back in the 80’s and early 90’s, there was a belief that glass fiber was non-conductive, isolated, and therefore blades could not be struck by lightnings,” recalls Lars Bo Hansen, Advanced Lead Engineer, Electro-System. “Wind turbines were relatively small, with rotor diameters in the range of 20-25m. Even when they were struck by a lightning, they could be easily repaired, often replacing the tip of the blade, which was a separate piece in blades with tip brake system”, adds Jesper Mansson, Chief Technical Advisor & former leader of the LPS team.
However, as blades grew in length and wind turbines grew in size, they became more susceptible to lightning strikes. Back then, the still young wind industry had a challenge that it needed to address on its way to demonstrate that it was a real solution to competitively decarbonize the energy system.
If there is a problem, there is also a solution
If the wind power history teaches us something, it’s that wherever there is a problem, engineers manage to also find a solution. And it was a team of LM Wind Power experts the first ones in the industry to tackle this issue, living up to the company’s reputation as a pioneer and technology leader.
“The first LPS consisted of a receptor on the tip for the lightning to strike there and then go down through a lightning current down-conductor for evacuation. In this way you could control where it hit, and evacuate the current in a controlled way, avoiding damage to the blade,” explains John Korsgaard, Senior Director, Engineering Excellence & former leader of the LPS team. “In these first systems, there was just one receptor in the blade tip, and we hoped the lightning would strike there, but in reality, we saw that it could strike in different places, and therefore a multi-receptor system was developed,” adds Yaru Méndez, Director, Electro Systems.
Back then there were no previous experience with LPS for wind turbines, nor test facilities to validate new technologies. The team developed these systems based on available knowledge from other industries, plus some recommendations from a group of Danish utilities, US experts, IEC standardization work and research institutes based on operation and research experience.
LM Wind Power has a solid track record of innovation and record-breaking blades. Technology evolution can sometimes bring new challenges, exactly what happened to the LPS with the turn of the century: “At LM Wind Power we were some of the first to introduce carbon blades as a way of improving their performance and weight, but carbon is also an extremely conductive material. We saw that the carbon fiber was struck by lightning as often as the actual receptors and came up with a diverter strip to evacuate the current in a controlled manner,” explains Lars Bo Hansen, one of the inventors of such a solution.
Innovation from there has been incremental, but the strong foundations were laid by this team of LM Wind Power engineers. They, once again, positioned the company at the forefront of the wind power evolution until becoming what it is today: An affordable, safe, reliable and sustainable source of electricity that holds the answer to a net zero future.
Sector News
Large construction site for the energy transition: RWE modernises two wind farms and increases power generation
Ground frost, gusts of wind, cold – the RWE team braved the adverse conditions. Over the next few weeks, a total of around 100 employees and experts from RWE and its partner companies will be working on two wind farms to dismantle 17 older wind turbines and replace them with 11 new, more powerful ones. By repowering the wind farms in this way, RWE can significantly increase electricity production despite using fewer turbines. This is due to the larger rotor blades being able to capture more wind and produce green electricity even when the wind is weak. At the Lesse and Barbecke sites, the company will increase capacity from 30.6 to 61.8 megawatts (MW).
Katja Wünschel, CEO RWE Renewables Europe & Australia: “43,500 is the number of the day. Once operational, the wind farms will be able to supply the equivalent of 43,500 households with green electricity. Electricity production at both sites will more than triple. Repowering is therefore making an important contribution to the success of the energy transition. But it is not only the climate that benefits, since we voluntarily pay an RWE climate bonus of 0.2 cents per kilowatt hour produced to the local communities. The town of Salzgitter and the municipalities of Lengede, Burgdorf and Söhlde can look forward to a total annual income of up to €280,000, which will be distributed among the municipalities.”
RWE opts for established wind sites in Lesse and Barbecke
The local conditions make the area suitable for wind power, with sufficient distance from the nearest villages and good wind conditions. In Lesse, RWE will replace eleven turbines of the oldest generation (total capacity 19.8 MW) with eight modern turbines with a total capacity of 44.7 MW.
In Barbecke, RWE will replace six existing turbines (total capacity 10.8 MW) with three turbines with an installed capacity of 5.7 MW each (total capacity 17.1 MW). The team has started to set up the construction site and carry out initial road works.
Any repowering project is a logistical challenge. In parallel with the new construction, the old turbines need to remain connected to the grid for as long as possible in order to continue generating green electricity.
Jens Meyer, Project manager at RWE: “We really have our hands full. While we have already laid the first foundation with a diameter of more than 26 metres for the new wind farm in Lesse, we were able to start dismantling the old plant at the same time. We are doing this in the most environmentally-friendly and resource-efficient way possible. We are leaving areas that are no longer required in such a way that they can be used without restriction after dismantling. We also reuse some of the gravel removed from roads and crane pads in the new wind farm.”
How communities benefit from wind power
RWE operates around 90 onshore wind farms in its home market. Involving citizens and local authorities in renewable energy projects is a key element in driving forward the energy transition. It promotes local acceptance. In Germany, the company gives all municipalities with an RWE wind farm a share of the profits. As the RWE climate bonus is paid per kilowatt hour of electricity generated, communities where high-capacity plants are based benefit the most. This creates an additional incentive to replace older plants with modern ones. In Lesse and Barbecke, electricity production will more than triple after repowering. Municipalities can expect to receive up to €280,000 per year of wind farm operation, up from up to €80,000. The additional income can be used, for example, to financially support local facilities such as day-care centres for children, schools and fire brigades. RWE plans to commission all new plants this coming winter.
Sector News
The EU built a record 17 GW of new wind energy in 2023 – wind now 19% of electricity production
The EU built 17 GW of new wind energy in 2023, slightly up on 2022 – and more than ever in a single year in fact. But it’s not enough to reach the EU’s 2030 targets. The EU should be building 30 GW of new wind every year between now and 2030. The actions set out in the EU Wind Power Package and European Wind Charter will help increase the annual build-out – national implementation is key. Wind was 19% of all electricity produced in Europe’s last year.
According to WindEurope data, the EU built 17 GW of new wind farms in 2023: 14 GW onshore; 3 GW offshore. These numbers are slightly up on 2022 and are the most the EU has ever built in a single year. But it’s well below the 30 GW a year that the EU needs to build to meet its new 2030 climate and energy security targets.
Germany built the most new wind capacity followed by the Netherlands and Sweden. The Netherlands built the most new offshore wind, including the 1.5 GW “Hollandse Kust Zuid” – for now the world’s largest wind farm.
The IEA estimates that Europe will build 23 GW a year of new wind over 2024-28. The actions set out in the EU Wind Power Package should deliver a significant increase in the annual build-out – and strengthen Europe’s wind energy supply chain. National implementation of the actions is key.
To that end the commitment to deliver the Wind Power Package that 26 EU Energy Ministers signed before Christmas in the European Wind Charter was key. Crucial actions include the further simplification of permitting, improvements in the design of the auctions to build new wind farms and public financial support for wind turbine manufacturing and key infrastructure.
Wind was 19% of the electricity produced in the EU last year. Hydro was 13%, solar 8% and biomass 3%. Renewables in total amounted to 44% of electricity produced.
The amount of electricity produced from 1 GW of wind continued to grow. The “capacity factor” of new onshore wind farms now ranges from 30-48%, and new offshore wind is consistently 50%. The capacity factor measures how much output you get from a unit of capacity – it varies between different renewable technologies.
Sector News
A Race to the Top China 2023: China’s quest for energy security drives wind and solar development
China is on track to double its utility-scale solar and wind power capacity and shatter the central government’s ambitious 2030 target of 1,200 gigawatts (GW) five years ahead of schedule, if all prospective projects are successfully built and commissioned, according to a new report from Global Energy Monitor (GEM).
China on track to exceed 2030 wind & solar target
With 757 GW of already operating wind and solar, and an additional 750 GW of prospective wind and solar, the majority of which expected to come online by 2025, the central government’s 2030 target is expected to be met 5 years ahead of schedule.
The Global Solar and Wind Power Trackers identify prospective projects that have been announced or are in the pre-construction and construction phases totalling approximately 379 GW of large utility-scale solar and 371 GW of wind capacity, which is roughly equal to China’s current installed operating capacity.
Nearly all of this prospective capacity is part of the government’s 14th Five-Year Plan (2021-2025) and enough to increase the global wind fleet by nearly half and large utility-scale solar installations by over 85%. This amount of prospective solar capacity is triple that of the United States, and accompanied by China’s significant share of approximately one-fifth of the global prospective wind capacity.
The Global Solar and Wind Power Trackers also show:
. China’s operating large utility-scale solar capacity has reached 228 GW – more than the rest of the world combined.
. China’s combined onshore and offshore wind capacity has doubled from what it was in 2017 and now surpasses 310 GW.
. Operating offshore wind capacity has reached 31.4 GW, and accounts for approximately 10% of China’s total wind capacity and exceeds the operating offshore capacity of all of Europe
“This new data provides unrivaled granularity about China’s jaw-dropping surge in solar and wind capacity. As we closely monitor the implementation of prospective projects, this detailed information becomes indispensable in navigating the country’s energy landscape.” Dorothy Mei, Project Manager at Global Energy Monitor
“China is making strides, but with coal still holding sway as the dominant power source, the country needs bolder advancements in energy storage and green technologies for a secure energy future.” Martin Weil, Researcher at Global Energy Monitor
-
Events6 years ago
Canada and Turkey women working in the renewable energy sector in met
-
Manufacturers of wind turbines6 years ago
GE’s Haliade-X 12 MW prototype to be installed in Rotterdam
-
Operations and Maintenance6 years ago
GENBA is on the rise; another milestone passed by in global existence
-
Genel9 years ago
EWT launches the DW61, It’s most efficient and high energy producing wind turbine
-
Genel9 years ago
Internet of things will empower the wind energy power plants
-
Turbine Manufacturing6 years ago
İğrek Makina focused on developing and producing Machine Tools and Wind Energy Turbines
-
Energy management systems6 years ago
Demand/Supply – Renewable energy with guarantees of origin (GO)
-
Events6 years ago
Key Players from 10 Nations will Show Their Strong Positions at APWEE
-
Manufacturers of wind turbines4 years ago
ENERCON installs E-160 EP5 prototype
-
Manufacturers of wind turbines6 years ago
The Nordex Group receives first order for Delta4000 turbines from the USA
-
Genel8 years ago
Zorlu energy envisages a bold new future based on renewables
-
Manufacturers of wind turbines6 years ago
ENERCON and Lagerwey together develop two new WEC types