Sector News
EcoSwing superconducting generator proves itself on the test bench
Compact design, low tower head mass, and good transportability: The generator developed in the EcoSwing research project, is to be used in the next generation of multi- megawatt turbines. To demonstrate practical feasibility of the superconductive concept, a test campaign on Fraunhofer IWES’ nacelle test bench followed by a field test on a two-blade turbine in Denmark was conceived. This first part at IWES is now completed and the experts at Fraunhofer IWES can confirm that this concept showed good results due to the functionality of the overall system. The testing of this high-temperature superconducting generator presented the test engineers with numerous challenges that were successfully addressed with special adaptions.
Sometimes less really is more: 40 per cent less weight and smaller dimensions than a comparable permanent magnet synchronous generator – these EcoSwing features are only possible thanks to superconductivity. With this solution just a fraction of the magnetically active material is required to outperform the power density of conventional generators. Since superconductors have practically no electrical resistance, the size of the conductor cross- section can be drastically reduced. This is a highly promising property for the development of future turbine generations.
“As world first, we stepped up in applying superconducting technology with the ambitious project EcoSwing. In order to reduce uncertainties, new technology needs testing under realistic conditions. The DyNaLab provided the opportunity to test under definable conditions and gain reliable results,” says Jesper Hansen, Senior Project Manager at Envision Energy.
The EcoSwing rotor is made up of two parts which are thermally decoupled by a vacuum chamber. The part responsible for the bearing and the mechanical connection of the generator rotor is operated at ambient temperatures; the electromagnetic part of the generator rotor is designed to operate at cryogenic temperatures. This places particular requirements on the test bench: The generator has to be cooled down to 30 K (that is about -240 °C) using a closed- cycle gas cooling. While this was the first time that such a cooling system has been operated at Fraunhofer IWES, it got confirmed that this type of cooling performed very reliably. Within the framework of EcoSwing, Fraunhofer IWES designed the mechanical adaptations for connecting to the test bench and, in doing so, developed and integrated a highly accurate measurement system for recording the enormous torques:
“Due to the special drive train concept, the generator is subject to virtually no parasitic loads when in use in the turbine, thus this situation also had to be ensured on the test bench. To achieve this, the generator was installed and adjusted with highest levels of precision,” said Hans Kyling, IWES project leader for EcoSwing, explaining this unique challenge. At the same time, a further prerequisite was also all-important: The generator had to be fixed in such a way as to allow evasive action when subject to a nominal load. The specific adaptation prevented constraining forces from acting on the test object and influencing the test data.
The test results are confirmation of the successful validation and excellent functionality of the system. The project partners are now looking forward to the field campaign with a 3.6 MW test turbine from Envision in Denmark. The generator with a diameter of just 4 m will be transported there by ship.
The project runs until end of Feb. 2019. The next step, focusing on commercial wind applications, is already being planned by the project partners.
Sector News
Large construction site for the energy transition: RWE modernises two wind farms and increases power generation
Ground frost, gusts of wind, cold – the RWE team braved the adverse conditions. Over the next few weeks, a total of around 100 employees and experts from RWE and its partner companies will be working on two wind farms to dismantle 17 older wind turbines and replace them with 11 new, more powerful ones. By repowering the wind farms in this way, RWE can significantly increase electricity production despite using fewer turbines. This is due to the larger rotor blades being able to capture more wind and produce green electricity even when the wind is weak. At the Lesse and Barbecke sites, the company will increase capacity from 30.6 to 61.8 megawatts (MW).
Katja Wünschel, CEO RWE Renewables Europe & Australia: “43,500 is the number of the day. Once operational, the wind farms will be able to supply the equivalent of 43,500 households with green electricity. Electricity production at both sites will more than triple. Repowering is therefore making an important contribution to the success of the energy transition. But it is not only the climate that benefits, since we voluntarily pay an RWE climate bonus of 0.2 cents per kilowatt hour produced to the local communities. The town of Salzgitter and the municipalities of Lengede, Burgdorf and Söhlde can look forward to a total annual income of up to €280,000, which will be distributed among the municipalities.”
RWE opts for established wind sites in Lesse and Barbecke
The local conditions make the area suitable for wind power, with sufficient distance from the nearest villages and good wind conditions. In Lesse, RWE will replace eleven turbines of the oldest generation (total capacity 19.8 MW) with eight modern turbines with a total capacity of 44.7 MW.
In Barbecke, RWE will replace six existing turbines (total capacity 10.8 MW) with three turbines with an installed capacity of 5.7 MW each (total capacity 17.1 MW). The team has started to set up the construction site and carry out initial road works.
Any repowering project is a logistical challenge. In parallel with the new construction, the old turbines need to remain connected to the grid for as long as possible in order to continue generating green electricity.
Jens Meyer, Project manager at RWE: “We really have our hands full. While we have already laid the first foundation with a diameter of more than 26 metres for the new wind farm in Lesse, we were able to start dismantling the old plant at the same time. We are doing this in the most environmentally-friendly and resource-efficient way possible. We are leaving areas that are no longer required in such a way that they can be used without restriction after dismantling. We also reuse some of the gravel removed from roads and crane pads in the new wind farm.”
How communities benefit from wind power
RWE operates around 90 onshore wind farms in its home market. Involving citizens and local authorities in renewable energy projects is a key element in driving forward the energy transition. It promotes local acceptance. In Germany, the company gives all municipalities with an RWE wind farm a share of the profits. As the RWE climate bonus is paid per kilowatt hour of electricity generated, communities where high-capacity plants are based benefit the most. This creates an additional incentive to replace older plants with modern ones. In Lesse and Barbecke, electricity production will more than triple after repowering. Municipalities can expect to receive up to €280,000 per year of wind farm operation, up from up to €80,000. The additional income can be used, for example, to financially support local facilities such as day-care centres for children, schools and fire brigades. RWE plans to commission all new plants this coming winter.
Sector News
The EU built a record 17 GW of new wind energy in 2023 – wind now 19% of electricity production
The EU built 17 GW of new wind energy in 2023, slightly up on 2022 – and more than ever in a single year in fact. But it’s not enough to reach the EU’s 2030 targets. The EU should be building 30 GW of new wind every year between now and 2030. The actions set out in the EU Wind Power Package and European Wind Charter will help increase the annual build-out – national implementation is key. Wind was 19% of all electricity produced in Europe’s last year.
According to WindEurope data, the EU built 17 GW of new wind farms in 2023: 14 GW onshore; 3 GW offshore. These numbers are slightly up on 2022 and are the most the EU has ever built in a single year. But it’s well below the 30 GW a year that the EU needs to build to meet its new 2030 climate and energy security targets.
Germany built the most new wind capacity followed by the Netherlands and Sweden. The Netherlands built the most new offshore wind, including the 1.5 GW “Hollandse Kust Zuid” – for now the world’s largest wind farm.
The IEA estimates that Europe will build 23 GW a year of new wind over 2024-28. The actions set out in the EU Wind Power Package should deliver a significant increase in the annual build-out – and strengthen Europe’s wind energy supply chain. National implementation of the actions is key.
To that end the commitment to deliver the Wind Power Package that 26 EU Energy Ministers signed before Christmas in the European Wind Charter was key. Crucial actions include the further simplification of permitting, improvements in the design of the auctions to build new wind farms and public financial support for wind turbine manufacturing and key infrastructure.
Wind was 19% of the electricity produced in the EU last year. Hydro was 13%, solar 8% and biomass 3%. Renewables in total amounted to 44% of electricity produced.
The amount of electricity produced from 1 GW of wind continued to grow. The “capacity factor” of new onshore wind farms now ranges from 30-48%, and new offshore wind is consistently 50%. The capacity factor measures how much output you get from a unit of capacity – it varies between different renewable technologies.
Sector News
A Race to the Top China 2023: China’s quest for energy security drives wind and solar development
China is on track to double its utility-scale solar and wind power capacity and shatter the central government’s ambitious 2030 target of 1,200 gigawatts (GW) five years ahead of schedule, if all prospective projects are successfully built and commissioned, according to a new report from Global Energy Monitor (GEM).
China on track to exceed 2030 wind & solar target
With 757 GW of already operating wind and solar, and an additional 750 GW of prospective wind and solar, the majority of which expected to come online by 2025, the central government’s 2030 target is expected to be met 5 years ahead of schedule.
The Global Solar and Wind Power Trackers identify prospective projects that have been announced or are in the pre-construction and construction phases totalling approximately 379 GW of large utility-scale solar and 371 GW of wind capacity, which is roughly equal to China’s current installed operating capacity.
Nearly all of this prospective capacity is part of the government’s 14th Five-Year Plan (2021-2025) and enough to increase the global wind fleet by nearly half and large utility-scale solar installations by over 85%. This amount of prospective solar capacity is triple that of the United States, and accompanied by China’s significant share of approximately one-fifth of the global prospective wind capacity.
The Global Solar and Wind Power Trackers also show:
. China’s operating large utility-scale solar capacity has reached 228 GW – more than the rest of the world combined.
. China’s combined onshore and offshore wind capacity has doubled from what it was in 2017 and now surpasses 310 GW.
. Operating offshore wind capacity has reached 31.4 GW, and accounts for approximately 10% of China’s total wind capacity and exceeds the operating offshore capacity of all of Europe
“This new data provides unrivaled granularity about China’s jaw-dropping surge in solar and wind capacity. As we closely monitor the implementation of prospective projects, this detailed information becomes indispensable in navigating the country’s energy landscape.” Dorothy Mei, Project Manager at Global Energy Monitor
“China is making strides, but with coal still holding sway as the dominant power source, the country needs bolder advancements in energy storage and green technologies for a secure energy future.” Martin Weil, Researcher at Global Energy Monitor
-
Events6 years ago
Canada and Turkey women working in the renewable energy sector in met
-
Manufacturers of wind turbines6 years ago
GE’s Haliade-X 12 MW prototype to be installed in Rotterdam
-
Operations and Maintenance6 years ago
GENBA is on the rise; another milestone passed by in global existence
-
Genel9 years ago
EWT launches the DW61, It’s most efficient and high energy producing wind turbine
-
Genel9 years ago
Internet of things will empower the wind energy power plants
-
Turbine Manufacturing6 years ago
İğrek Makina focused on developing and producing Machine Tools and Wind Energy Turbines
-
Energy management systems6 years ago
Demand/Supply – Renewable energy with guarantees of origin (GO)
-
Events6 years ago
Key Players from 10 Nations will Show Their Strong Positions at APWEE
-
Manufacturers of wind turbines4 years ago
ENERCON installs E-160 EP5 prototype
-
Manufacturers of wind turbines6 years ago
The Nordex Group receives first order for Delta4000 turbines from the USA
-
Genel8 years ago
Zorlu energy envisages a bold new future based on renewables
-
Manufacturers of wind turbines6 years ago
ENERCON and Lagerwey together develop two new WEC types