Offshore
German offshore auctions award 7 GW of new wind; future auctions must avoid negative bidding
Today Germany announced the results of its biggest offshore wind auction to date. 7 GW of new capacity were awarded. The auction design required project developers to pay for the right to build their wind farms. This uncapped negative bidding means costs will have to be passed on to consumers, and to the wind supply chain which is already struggling. This needs to change for future auctions.
Today Germany announced the winners of its 7 GW offshore wind auction for sites that were not pre-developed by the State. It was Germany’s biggest offshore wind auction to date.
The auction consisted of three sites of 2 GW located in the North Sea (N-11.1, N-12.1, N-12.2) and one site of 1 GW located in the Baltic Sea (O-2.2). The winners were bp for two sites in the North Sea and Total Energies for one site in the North Sea and the site in the Baltic Sea.
Changes to unfavourable auction design with “uncapped negative bidding” needed
For each of the four sites more than one company pledged to build without any state support, triggering an additional “dynamic bidding procedure”. The procedure required developers to enter a second round of uncapped negative bidding. Bids were awarded on the basis of price only.
Negative bidding creates additional costs for offshore wind developers. These costs must be passed on. Either to the supply chain which is already struggling with inflation and surging input costs. Or to the consumers who already face higher electricity prices and costs of living.
Crucially the European Union wants to strengthen its energy security with competitive and home-grown renewables. The EU needs as much new wind energy capacity as it can get, as fast as it can get it. All the money paid in negative bidding is money our companies cannot invest in other wind energy projects. European Governments should therefore not follow the German example of negative bidding.
As a result, offshore wind developers will have to pay a total of €12.6bn to the German Government. 90% of the money will go towards funding the grid connection costs, 5% will be used to protect maritime biodiversity, another 5% to support environmentally-friendly fishing.
The four projects are scheduled for commissioning by 2030. For a timely delivery of these projects Germany needs to expand its offshore wind supply chain, for example the industrial capacity for the construction of wind turbines, foundations and the installation vessels. But investments are also needed in grids, ports and skilled workers. Negative bidding is unhelpful here. Companies along the wind energy supply chain will have to work with even tighter margins, as developers pass on the extra costs of negative bidding to them.
More auctions in 2023
These were not the last offshore wind energy auctions in Germany in 2023. Germany will also tender 1.8 GW of offshore wind on centrally pre-developed sites this summer. These sites will be auctioned under a different auction design which includes four non-price criteria: environmental protection, contribution to skilled workforce, CO<sub2< sub=””> footprint in the production of the wind turbines, existence of PPA contracts. The uncapped “dynamic bidding procedure” will not apply to these sites.</sub2<>
Combining these two offshore wind auctions, Germany will tender a total of 8.8 GW of offshore wind in 2023 – more than its combined installed offshore wind capacity
Offshore
The world’s most powerful floating offshore wind turbine rolled off the line at CRRC’s Sheyang production site
CRRC’s Qihang 20MW floating offshore wind turbine successfully rolled off the production line in Sheyang, Jiangsu. As the world’s most powerful floating offshore wind turbine, Qihang is expected to break the geographical limitations and extend wind power generation to even broader deep blue seas.
The wind turbine features a sweeping area equivalent to more than 7 standard football fields, a blade tip speed of up to that of a high-speed train (HST), and a power level of 20 megawatts. A single unit provides the ability to output clean electricity by 62 million kilowatt hours per year, which addresses the need of about 37,000 households, saving 25,000 tons of coal and reducing 62,000 tons of carbon dioxide emissions.
In addition, the wind turbine is designed with leading concepts, aiming to provide such advantages as system modularity, superior stability, and across-chain collaboration. Modular unit, function and platform allow for optional power levels, functionalities, bases and floating platforms. With wave and wind resistant floating design, it incorporates customized components with low failure rate, high fault tolerance, and strong vibration resistance, which underwent extensive experimental verifications to ensure safe, stable, and reliable operation. Based on the proven HST technology and rich experience of CRRC, and supported by the most comprehensive wind power equipment supply chain, it offers leadership in terms of product performance and core technology, and is described by many as “standing HST” created by CRRC.
Consulting
DNV tapped to help lenders and investors assess USD 40 billion worth of U.S. offshore wind projects
DNV is performing due diligence to enable the financing of eight offshore wind projects on the United States’ Atlantic Coast. The announcement follows news from DNV’s Energy Transition Outlook 2024 report, which forecasts that about 10 GW of fixed offshore wind is set to be installed in the U.S. between 2040 and 2050. While the industry has seen headwinds recently, and the latest Energy Transition Outlook has tempered its overall forecast for offshore wind, projects are still moving steadily forward, as reflected by the robust financing activity in the U.S. The offshore wind projects DNV is assessing collectively represent 13 GW of clean energy capacity, which would increase the U.S.’s total wind power capacity by nearly 9% if they become operational.
The technical due diligence DNV is providing to the financial stakeholders for these offshore wind projects is grounded in sound engineering judgement which is very important for developers, lenders and investors. This methodology is an evolution of the company’s proven approach that has enabled on-time financing for thousands of onshore wind, solar, transmission and battery energy storage projects in the U.S. and Canada.
DNV has also established local, in-house expertise around the intricacies of U.S. project finance and the structures that have emerged since the passage of the Inflation Reduction Act (IRA), such as transferability. Many stakeholders in the U.S. offshore wind industry are headquartered in Europe and rely upon DNV for its on-the-ground knowledge of the U.S. financing landscape. For these eight offshore wind projects, DNV is providing pre-commitment and construction monitoring due diligence to ensure all stakeholders understand the risks of the project prior to final investment decision and further capitalize on tax credit monetization opportunities from the IRA. These services are delivered within established financing mechanisms and processes to ensure on-time closing.
“So far, three of the eight offshore wind projects we’re involved with have reached a final investment decision and the balance is making rapid progress towards this milestone. Our customers are now getting steel in the water and creating benefits for local communities,” said Richard S. Barnes, region president for Energy Systems North America. “We’ve learned that the offshore wind projects getting financed and moving into the development and construction stages are the ones where developers can hit narrow installation windows because they’ve identified and mitigated risks around vessel availability, supply chain, and evolving regulatory requirements.
” DNV’s U.S.-based offshore wind team enabled clients to succeed in California’s 2022 offshore auction, providing in-depth assessments of the technical, societal, and environmental risks around offshore wind development in Oregon and Maine, and are addressing barriers on behalf of the industry to accelerate the deployment of high voltage direct current (HVDC) technology. This regional team is backed up by a global network of experts that has assessed 50 GW of offshore wind energy.
“DNV uses our advisory expertise to help offshore wind projects increase performance and minimize risks. Success relies on understanding the dependencies between different parts of the offshore wind value chain – this is why we take a full lifecycle approach to managing risks and reducing costs,” concluded Barnes.
Offshore
BOEM Issues Offshore Wind Research Lease to State of Maine
Today, the Bureau of Ocean Energy Management (BOEM) announced the execution of the nation’s first floating offshore wind energy research lease. The lease area covers a little under 15,000 acres located 28 nautical miles offshore Maine on the U.S. Outer Continental Shelf and could allow for the deployment of up to 12 floating offshore wind turbines capable of generating up to 144 megawatts of renewable energy.
The research array will allow the State, the fishing community, wildlife experts, the offshore wind industry, and others to conduct in-depth studies and thoroughly evaluate floating offshore wind as a renewable energy source in the region. Research conducted on the array will evaluate its compatibility with existing ocean uses and assess its potential effects on the environment, supply chains, and job creation.
“Floating wind opens up opportunities to produce renewable energy in deeper water farther offshore.” said BOEM Director Elizabeth Klein. “Signing the Gulf of Maine research lease demonstrates the commitment by both BOEM and the State of Maine to promote a clean energy future for the nation. It is another example of a successful all-of-government effort to reach the Administration’s offshore wind energy goals and to combat the impacts of climate change.”
Information gathered from the research lease will inform responsible commercial floating offshore wind development in the future and allow BOEM and Maine to capitalize on innovative technology, while protecting local and national interests and industries.
“Clean energy from offshore wind offers an historic opportunity for Maine to create good-paying jobs, reduce our reliance on fossil fuels, and fight climate change by cutting greenhouse gas emissions,” said Maine Governor Janet Mills. “This lease between the State and BOEM to support the nation’s first research array devoted to floating offshore wind technology is the result of extensive engagement with stakeholders and communities across our state to establish Maine as a leader in responsible offshore wind, in balance with our state’s marine economy and environment.”
Since the start of the Biden-Harris administration, the Department of the Interior has approved the nation’s first nine commercial scale offshore wind projects with a combined capacity of more than 13 gigawatts of clean energy — enough to power nearly 5 million homes. In that time, the Department has held five offshore wind lease auctions – including a record-breaking sale offshore New York and the first-ever sales offshore the Pacific Coast and in the Gulf of Mexico. The Department also recently announced a schedule to hold up to 12 additional lease sales through 2028. On August 14, BOEM will hold an offshore wind lease sale for the Central Atlantic, auctioning areas offshore Delaware, Maryland, and Virginia that could generate up to 6.3 gigawatts of clean energy and power up to 2.2 million homes.
BOEM received an application from the State of Maine for a renewable energy research lease in October 2021. On March 20, 2023, BOEM issued a Determination of No Competitive Interest for the area identified in Maine’s application.
BOEM engaged with the State of Maine Governor’s Energy Office throughout the application review and lease development process to develop a lease that yields high-quality research on offshore wind in the Gulf of Maine. On May 24, 2024, BOEM offered a research lease to the State of Maine after completing a Final Environmental Assessment and associated finding of no significant impacts.
As a research lease, the State of Maine or its designated operator will propose and conduct research regarding environmental and engineering aspects of the proposed project. This information will be made public and used to inform future planning, permitting, and construction of commercial-scale floating offshore wind projects in the region.
Construction activity on the research array is not likely to occur for several years. The lessee is first required to submit a Research Activities Plan to BOEM, which will undergo environmental analysis under the National Environmental Policy Act. Additional details on the timing of construction will become clearer as the permitting process progresses.
-
Events6 years ago
Canada and Turkey women working in the renewable energy sector in met
-
Manufacturers of wind turbines6 years ago
GE’s Haliade-X 12 MW prototype to be installed in Rotterdam
-
Operations and Maintenance6 years ago
GENBA is on the rise; another milestone passed by in global existence
-
Genel9 years ago
EWT launches the DW61, It’s most efficient and high energy producing wind turbine
-
Genel9 years ago
Internet of things will empower the wind energy power plants
-
Turbine Manufacturing6 years ago
İğrek Makina focused on developing and producing Machine Tools and Wind Energy Turbines
-
Energy management systems6 years ago
Demand/Supply – Renewable energy with guarantees of origin (GO)
-
Events6 years ago
Key Players from 10 Nations will Show Their Strong Positions at APWEE
-
Manufacturers of wind turbines4 years ago
ENERCON installs E-160 EP5 prototype
-
Manufacturers of wind turbines6 years ago
The Nordex Group receives first order for Delta4000 turbines from the USA
-
Genel8 years ago
Zorlu energy envisages a bold new future based on renewables
-
Manufacturers of wind turbines6 years ago
ENERCON and Lagerwey together develop two new WEC types
Pingback: Giles Dickson evaluated the busy agenda for Wind Energy: 'Made in Europe' should include Turkey - Wind Energy Turkey